
N SIMPLE GAMES: A MATHE MATICAL ANAI.YSIS —E IC(tJ)
k91 MA THEMA flCS Ft

ASSIFIED 

~~__A: ____ 
______________ 

Pt

ao~ O4949I __________________________________

_

Ion! --

END
0*

_________________ _________________ 0

78

I



0 ~ IIIII~ ~~
______ 

2.2

I.’• IIll~
• .25 UIlli~ uu~

MICROCOPY RESOLUTION TLS I C F-4I RT
NA BIIAI AU ~ ..NJAR[)~ I ft.



/3

MRC Technical Summary Report #180

ON COALITION FORMATION IN SIMPLE GAMES :
A MATHEMATICAL ANALYSIS OF CAPLOW ’S
AND GAMSON ’ S THEORIES

Prakash P. Shenoy

,
~~~~ “~—1

~r Mathematics Research Center
Universit y of Wiscon sin—Madison
610 Walnut Street
Madison , Wisconsin 53706

November 1977

Received November 1, 1977

T~ CTT

Ii.
Approved for public re leas e ,~ ~~~~~~~~~

,

Distribution unlimited

Sponsored by

U. S. Army Research Office and National Science Foundation
P. 0. Box 12211 Washington , D. C. 20550
Research Triangle Park
North Carolina 27709



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ,.~~~~~.. ~~~~~~~ r~~’~~~~-’ 
-- -

• CNIVERSITY OP WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

ON COALITION FORMATION IN SIMPLE GAMES :

A MATHEMATICAL ANALYSIS OF C..-.~ c~~’ S AND GAMSON ’ S THEORIES

Prakash P . Shenoy

Technical Suzm~ary T~eport * 1808
November 1977

ABSTRACT
In this paper , we propose a theory of coalition formation in simple games.

The process of coalition formation is modeled as an abstract game. Two solu-

tions of abstract games, the core and the dynamic solution, are used as the

predictions of our model. Two classical theories of coalitions in sociology

due to Caplow and Gamson are reformulated in a more general and mathematical

setting. These theories are then analyzed using the techniques of our theory.
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SIGN IFICANCE AND EXPLANATION

A simple game is a pair (N ,~~) where N is a set of players and ~ is

a set of all winning coalitions. (A coalition is a subset of N ) .  Given a

simple game, one is interested in predicting the coalition that will actually

form.

Simple games are mathematical abstractions of decision making institu-

tions in real life such as legislatures , committees , elections etc. Coali-

tion formation in simple games has been the subject of numerous empirical

and theoretical studies in the social sciences. However , most of these theories

are of a rather ad hoc nature .

In this paper , we propose a theory based on the theory of n-person

cooperative games. Two classical , non-mathematical  theories of  coal i t ion

formation in sociology due to Caplow and Gamson are reformulated in a more

general and mathematical setting , and analyzed using the techniques of our

theory .

The responsibility fo r  the w~ r J~ nq and vi ’~w~ ~x~ r ’~~sed in this descri~~t ive
sux~unary lies with MRC , and n~~t- with the au t 1i~ r of this report.
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ON COALITION FORMATION IN SIMPLE GAMES :

A MATHEMATICAL ANALYSIS OF CAPLOW S AND GANSON’S THEORIES

Prakash P. Shenoy

1. introduction

This paper deals with the question of coalition formation in simple games. Coalition

formation has been the subject of many empirical and theoretical studies in the social sciences.

There are a number of simple theories which essentially consist of a hypothesis concerning the

player s goals or motives, a premise concerning their payoffs and an inference which singles

out the coalitions most likely to form. Some of these theories are reviewed in Shenoy [26).

Regarding simple games , the main thrust of the research in game theory has been in

d~ t~— rm iu ir q an index which measures the power of each player. Here , we model the ~rocess

of . ea li tic r formation as an abstract game . The core and the dynamic solution of the abstract

game are then used as the predictions of our model.

Two c1ussi~~ol theo~~i r - s  of coalition formation due to Caplow and Gamson are reformulated

in a slightly mere n-neral and mathematical setting. These theories are then analyzed using

the to rI n i -~u - S  of our

In Section 2, w~ io- view the core and the dynamic solution of abstract qames. Simple

game s are introduced in t i - r n  ~~. Our model of coalition formation is presented in Section 4.

Section 5 outoins a r e r n c - -I totn o~ 1 :1  - u t  model by means of directed graphs. The predictions

of our model a r r  t t o c lrc -~ riCe ] ~n graph theoretic terminology. The mathematical analysis of

Cal low ’s and - - n - -I ’s theories are ‘ r - - ~~rted in •- - rc tiori 6 and 7 respectively. Finally,

.OC2Ljon H - - ~ n t H  i is some - - n-ludi ng remarks.

sponsored by the United States Army ur i i er  C o n t r a c t  No. DAAG29-75—c-0024 and the National
•‘~~i i nir- ~- Foundation under Grant No .~~~t .  7 -17385 AOl.
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2. The core and the dynamic solution of abstract games.

An abstract ~~~~ is a pair (X, dom) where X is an arbitrary set whose members are

called outcomes of the game , and dom is an arbitrary binary relation defined on X and

is called domination. An outcome x € X is said to be accessible from an outcome y € X

denoted by x + y (or y -~ x) , if there exists outcomes z
0 x, z1

,z2,...,z 1,z

where zn is a positive integer such that

(2.1) x = z dom z dom a don ... don a dom z y.
0 1 2 rn—i in

Also assume x ‘- x , i.e. an outcome is accessible from itself. Clearly the binary relation

accessible is transitive.

An interpretation of the relation accessible is as follows: If the players are consid-

ering an outcome y at some stage, then an outcome they will consider next will be a z e X

such that a dorn y. If x *- y and if the players are considering outcome y at some time ,

then it is possible that they will consider outcome x at some future time. I.e. one may

interpret the relation as a possible succession of transitions from one outcome to another.

Two outcomes x and y which are accessible to each other are said to communicate

and we write this as x y . Since the relation accessible is transitive and reflexive it

follows that communication is an equivalence relation. We can now partition the set X into

equivalence classes. Two outcomes are in the same equivalence class if they communicate with

each other. -

The core C (due to Gillies [141 and Shapley) of an abstract game is defined to be the

set of undominated outcomes. We can rewrite the definition of the core in terms of the rela-

tion accessible as follows

(2.2) C = (x s X : For all y r X , y ~ x, we have y f x).

I.e., in the terminology of Markov chains, the core is the set of all absorbing outcomes.

Note that each outcome in the core (if nonempty) is an equivalence class by itself.

We define an elementary dynamic solution (elemn. d-solution) of an abstract

game (X,dom) as a set S C X such that

(2.3) if x € S , y s X—S , then y ~
- x and

(2.4) if x,y € S , then y -~~ x and x 
~ y. 

H

Condition (2.3) requires S to be ‘externally stable ’ in a dynamic sense, i.e., if the players

are considering x ~ S at some time , then they will never consider any outcome that is not in

—2—
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S in the future. We can th i n k  of Condi t ion  ( 2 . 4 )  as ‘ i n t e r n a l  s t ab i l i ty ’ in a dynamic

sense . I.e., it the  players make a transition (in the c o n s i d e r a t i o n  of outcomes) from

x to y , then it is possible tha t the [layers will again reconsider the outcome x in

the future.

Note that  an elem. d —solu t ion  i~ an I - ~~~i 1 V~~~1o! O c  ~lass. The converse , however ,

is not always true , i.e., an e q u i v a len c e  class need not be ao E?lelfl . d - s ol ut i o n .  Condi—

tion (2.3) requires S to be (in the terminology of r~arkov chains) a non—transient

equivalence class. Also note that each outcome in the core is an elem. d—solution.

The dynamic solut ion C d - s o l u t i o n)  P of an abstract game is the union of

all distinct elementary dynamic s o L u t io n s .  I . e . ,

( 2 . 5 )  P = u {s c X : S is on e i . - r n .  d — s o lu t  ion }

The fo l lowinq  a re  easy - ou ;e- iu e r i- :es  of I C - -  do E  l u l l  ion.

Proposition 2 .1. eL  (X , dom) be a ny  ol - s tr ~ - I lame . Then C c P

Theorem 2 . 2 .  I I  X is a f i n i te  set , then flu dynamic  s o l u t i o n  of the abs t rac t  game

(X , dom) is always 000empty and is a n f l -j u n  c t .

Proof.  See Shenoy [ 2 7) .

The d y n a m i c  s ol u L i e n  has also Es r~ de f ined  independen t ly  by Kalai , Pazner  and

Schxneidler [17 , 1 8 ).

— 3 —
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3. Simple Games.

Let N = (1. n) denote the - set of players. Nonempty subsets of N are called

coalitions. A simple 
~~~~ 

can be represented by a pair (N ,~ ) where ~ is the set of

all winning coalitions. A simple game is monotonic iff R e , T D R T i ~~~~, and

proper iff R e~ N—R 4 ~ . Proper simple games are always monotonic. A winning

coalition R is called minimal winning if every proper subset of R is non-winning .

A monotonic simple game can be represented by the pair (N ,?) where is the set

of all minimal winning coalitions. I~ 
~~m 

= {(i}}, then player i is said to be a

dictator. If j E ~ 4 , then player j is said to be a veto player. If k ~

then player k is said to be a dummy. A weighted majority game is a monotonic

simple game that can be represented by

(3 .1) Eq a1 
a ]

where q > 0 is called the quota, a . > 0 is the weight of the ~
th player and

R s~~ a. > q . Expression (3.1) is said to be a weighted majority representa-
icR

tion of the simple game . Note that the weighted majority game represented by (3.1) is

proper if q > (a
1 

+ a
2 

+ ... + a )/ 2

-4- j
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4. A Model of Coali t ion Formation.

let r be a n-person simple game . Let 2N denote the set of all nonempty sub—

sets (coalitions) of N and TI denote the set of all partitions (coalition structures)

of N . Let 5 : -~ E
n be a power index (p.i.) where E° denotes the n—dimensional

Euclidean  space. I n tu i t i ve ly ,  given that players in N a l ign themselves into coali t ions

in the coalition structure (c.s.) P € TI , we interpret S (P) as a vector in E’t whose

. th • • • -
i. component ~~(I~)(i) is a numerical measure or player i’s power. E.g. 5 may de-

note the Shapley—Shubik powe index , the Banzhaf—Coleman power index , the nucleolus , etc.

We can regard TI as the set of outcomes of an abstract game. We define a binary

relation on II as follows.

Let 
~l’ 2 ~ II , and 5 be a p.i. Then dominates with respect to p.i.

5 , denoted by p1 
dom(5)22 , iff

a nonempty R € 
~ l 

such that (i) > 5(0
2
) ~~~ V i € R

Intuitively , if dom (~.) ~ 2’ 
then the players in some coalition R in c.s. p

1

prefer 01 
to p

2. We require the players in subset R to be together in a coalition

in c.s. so that there is no conflict of interest between these players ’ preference

for and their allegiance to the other players in their coalition.

The dominance relation as defined above may be neither asymmetric nor transitive.

We now have an abstract game (TI , dom(g)) where II is the set of outcomes and dom(5)

is a binary relation on TI . Let K0(5) 
and l(

i
(5) denote the core and the dynamic

solution respectively of this abstract game. By Proposition (2.1), we have

It is conceivable that I(
o(5) 

may sometimes be empty. However , since N is

a finite set , TI is a finite set and hence by Theorem (2.2) we have K1(5) ~ 
.

and K
1
($) can be considered as the predictions of our model.

—5—



5. Representation by Digraphs

Since the number of coalition structures is finite , we can represent the abstract

game (fl,dom (5)) by means of a directed graph (or digraph). Let ID be a digraph whose

vertex set v(D) = H and whose arc set A (0) is given by

A (D) = 

~~~~~~~~~ 
11 

~ 
11:02 

don (~)

We call such a digraph ID the transition digraph of the abstract game (fl ,dom(g)).

Let (01,P2) € A (D). Then we say P1 is adjacent 
~~ ~ 2 and is adjacent from

p
1 

. The outdegree, od (p), for p c TI is the number of c.s.’s adjacent from it and the

indegree, id (p), for p c TI is the number adjacent to it. Then in terms of this ter-

minology, the core of the abstract game (IT ,dom (g)) is given by

- 

~~~~~ 
= {P~ TI: od(P) = 0}.

To define the dynamic solution in terms of the transition digraph, we need a few

more basic definitions from graph theory (Cf. Harary 116]). A (directed) walk in a di—

graph is an alternating sequence of vertices and arcs 
~~~~~~ 

e
1
, p

~ 
e , 0n 

in which

each arc e. is (p 1,p .). A closed walk has the same first and last vertex. A

is a walk in which all vertices are distinct; a cycle is a nontrivial closed walk with

all vertices distinct (except the first and the last). If there is a path from 
~ l 

to

then P2 is said to be accessible from 
~~1

. A digraph is strongly connected or

strong if any two vertices are mutually accessible. A strong component of a digraph is

a maximal strong subgraph. Let T1,
T
2
,... ,T be the strong components of ID . The con-

densation ID of D has the strong components of D as its vertices , with an arc from

T. to T . whenever there is at least one arc in ID from a vertex of T. to a vertex
1 3 1

of T.. (See Figure 5.1). It follows from the maximality of

I D :  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

D* : 

~~~~~~~~~~~~~~~~~~~

Figu re 5.1 A digrap h and i t s  condensation.
—6—
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of strong components that the condensation ID of any graph has no cycles. The dynami c

solution of the abstract game (R,dom (~ )) is given by

K (g) = : od (T .) = 0 in the condensation D}.
I 

1 i 1

— 7 —
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6. A Mathematical Analysis  of Caplow ’ s Theory of Coalitions in the Triad

Much of the recent research on coalition formation in sociology and psychology was

generated by a paper by Caplow [71. Caplow proposes that the formation of coalitions

“depends upon the initial distribution of power, and other
things being equal, may be predicted under certain assump—
tions when the initial distribution of power is known . ’ 17)

Caplow ’s four assumptions are :

A.l . Members of a tr iad may d i f f e r  in s t rength .  A stronger member can control a

weaker member and will seek to do so.

A.2. Each member of the triad seeks control over the others. Control over two others

is preferred to control over one other. Control over one other is preferred to

control over none .

A.3 . Strength is additive . The strength of a coalition is equal to the sum of the

strengths of its two members.

A.4. The formation of coalitions takes place in an existing triadic situation , so

that there is a pre—coalition condition in every triad. Any attempt by a stronger

member to coerce a weaker member into joining a non—advantageous coalition will

provoke the formation of an advantageous coalition to oppose the coercion.

Caplow enumerates six different triadic power structures and , based on his assump-

tions , makes predictions as to which coalitions will form in each type of triad. In a

subsequent paper, Caplow (8] lists two more types of triads that were overlooked in the

original presentation along with his predictions. The predictions are listed in Table

6.1. Before we compare our theories with Caplow ’s theory, we will restate Caplow ’s theory

in a mathematical setting .

Let r be an n-person weighted majority game

(4.1) Iq;a
1
,.. . ,a I  where q ~ (a1 

+ ... + a )/2,

and let ~~ denote the set of all wi nning coalitions in r . Let i. and j  be two Jis—

tifict players. We say that player i controls player j in coalition structure o it f

either

1
~The author assumes full responsibility for the ensuing formulation , which, though nevr r
formally stated, is implicit in Caplow ’s paper (7).

— 8-
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(4.2) a. > a . ,  and i, j  
~ ~k ~ ‘ 

~k 
~ 0 ,  or

(4.3) ~ ‘ 
~ 

1’k ‘ 

~k 
~ P.

Let 8(0) (i )  denote the n umber of players player i controls in c,s. P . The Caplow

Power Index , denoted by ~ , is defined as follows :

~~ ~
(2) ( i )/  ~ 8(P)(j) if ~ 8 ( P ) ( j )  

~~ 0
j C N  j~~N

( 4 . 4 )  K (p) ( i)  =

L. 0 otherwise

for all I N and all ~ N

Intuitively, K (p) (i) denotes the relative power of player i when the players are

aligned as in C’s. 9

We are now in a position to compare Caplow ’ s predictions with the predictions ~f our

theory. Examples 6.1-6.8 deal with the eight different types of triads analyzed by

Caplow. At the end of each example , we quote Caplow ’s analysis of the triad , partly to

justify our definition of the Caplow power index.

Example 6.1. consider the Type 1 triad (2; 1,1,11. Then the caplow power index , K , is
A B C

given by

(0 , 0 , 0) if P = (A)  (B)  (C)

(1/2 , 1/2, 0) if p = (AB) (C)

K ( 9 )  = ( 1/2 , 0, 1/2) if ~ = (AC)(B)

• (0, 1/2, 1/2) if 2 = (A) (BC)

(0, 0, 0) if p = (ABC)

The transition digraph is as in Figure 6.1. K0(K) = ((AB)(C), (AC)(B), (A)(BC)}.

Caplow argues:

‘ , , .each member strives to enter a coalition within which
he is equal to his ally and stronger (by virtue of the
coalition) than the isolate.” (71

Example 6.2. Consider the Type 2 triad [5; 3,2,21. Then the Caplow power index , K
A B C

is given by

•1
~Note that, although Caplow stated his theory only for the restricted case of triads

,
our formulation of Caplow ’s theory holds for the more general case of n—person proper
weighted majority games.

-10-
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( A ) ( B ) ( C )

-,

(AB)(C) -4 (ABC)

(A C ) ( B )
(A ) ( B C )

Figure 6.1. The transition digraph of Type 1 triad .

( A ) ( B ) ( C )

(AB )( C)  (ABC )

(AC ) (B)  
( A )( B C)

Figure 6.2.  The transit ion digraph of Type 2 triad .

-11-
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(0 , i , 0) if • )  = ( A )  ( H )  (C)

( 2 / 3, 1/3 , 0) if ~~ = (AB)  ( C )

(2) = (2/ 3 , 0, 1/3) if 9 = (AC) ( B)

(0 , 1/2 , 1/2) i f  2 = (A)  (B C )

(1, 0 , 0) i f 9 = (ABC )

The t r ans i t i on  digraph is shown in F igure  6 . 2 .  K
0

( K )  = {(A) (BC)~ . Cap low ar~; u :

“ . . .Consider the posi t ion of B . If he forms a c o al i t i s w~~t r
A , he wil l  (by Vi r tue  of the coali t ion) be s t ronger  than C ,
but wi th in  the coal i t ion  he wil l  be weaker than A . I f , on t~~~
other hand , he forms a coali t ion wi th  C , he w i l l  be equal to
C wi th in  the coai it ion  and stronger than A by v i r t u e  of th~
coali t ion,  The position of C is iden t ica l  wi th  t h a t  of H .  -- [7]

Example 6 .3 .  Consider the Type 3 tr iad (3;  1, 2 ,2 1.  Then the Caplow power index ,
A B C

is given by

- 

- (0 , 0 , 0) if p = (A)  (B)  (C)

(1/3 , 2/3, 0) if p = (AB) (C)

K(9)  = (1/3 , 0, 2/3) if P = (AC) (B)

(0 , 1/2 , 1/ 2)  i f  ~ = (A)  (B C)

(0 , 1/2 , 1/2) if p = (ABC)

The t rans i t ion  di graph is shown in Figure 6 . 3 .  K
0

( K )  = {(AB) (C) , (AC ) (B))  . Cap low

argues:

, . A  may s t r e n g t h e n  his  position by f o r min g  a c o a l i t i o n  w i t h
either B or C , and will be welcomed as an ally by either
B or C . On the other hand , if B j o i n s  C , he does not
improve his pre—coalition position of equality with C and
superiority to A . His  only  mot ive  to enter a coali t ion wi th
C is to block AC. However , C’s position is identical with
B and he , too, will prefer A to B as an ally. [7)

Example 6 .4 .  Consider the Type 4 triad [3; 3,1,1] . Then the raplow power index ,
A B C

K, is given by

(1 , 0, 0) if p = (A) ( B) ( C )

(2/ 3 , 1/3, 0) i f  ~~ (AB)  (C)

K(~~) = ( 2 / 3 , 0, 1/3) if p = (AC) (B)

(1 , C , 0) if  9=  ( A )  (BC )

( 1 , 0 , 0) i f  ‘ (ABC )

— 1 2 —

____________________ - 
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(A )( B) (c )

(AB )( C)  (ABC )

a

(AC ) (B)  
- (A ) (BC )

Figure 6.3 .  The transition digraph of Type 3 triad .

(A (B ) ( C )  -

(AB)(C) • (ABC )

• (A )( BC )
(AC) (B)

~~~ure 6.4. The transition digraph of Type 4 triad .
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The traisitio ft I i  i i ;  I - i s - i s ,  i n  F i  r i r - - -~~4 .  
~~~~ 

) = 1(A ) (B) (C), (A) (BC), (ABC ) I .

Caplow ~lr qu-

.B and C lay,- n- i ‘i t ive to ent~~I a c oal i ti o n  wi h ,-ach i t  h - - i -

~~~
- - formed , i . c o al i ’  i - , n  wou ld  - t i !  ii’- weaker  than A and ;~~~~~

••

-i l - I  -~ i ill ‘~e equal w~~t h i j i  it  - A on the - t i ~.~ han d , hds no met i v,-
t r ’ i C O a l i ’ i , a - , t h  B - ,  C , ~~r - - e i ~ - iS ‘ i

- i t  t : - - - r n  m l  i s  i st  ~t , a t .  ii, - - t  I - • heir - r i a i t t  ion. N s-ilitii n w i l l
be ,-meil , ii 1 es- B r C i nd - • - X t I , - ‘ - ‘  • ~- —

ii, ; A I -  (040 ‘hem. ” (71

Exa nj 1~ onsi ;- I ’r s- i’-,-~ - ‘ i i 3  (S; ; • ,2 1.  -r~en - - , 
~~ 

•
~~~~

- i In 1. ~
A l - C

q i v i - i  i .

( i i , ), U )  ~ t P — (A) (B) ( !

(2 / - , I ~~, Q) if  0 — (A B) (C )

a- (2 - U , I~-’U 1’ p íA ((B)

2 ’), 1/ 1 )  i~ (A)  41w

(2/ 4 , I, 4 . 0) i: 0 — (ABC )

“‘s ‘ ; ,‘ . ‘ i - i  fi (I-a (-h is i s ’  i.n Figure ‘ .5. ‘ ,) — iA i (R) . ( A H B C ) ) .  a~

I r - i- -
I

-~~~- -  ~ ‘ - ~oi r I- - 4 F’ and C and • • t -  )oifl
h ,th A •tr 4 B ‘ B :~a- n- ir . - - -~ .t tve 4 ,-nt ,-r a - i i i ;  it- i

W I  ti: A - -c i i - ‘  V ’i  st I i  5 - - I t  Iv - t - i - i  a cc iii ; i - .

with C . W4 -t - r  the li ff , - r - i . t jal - -t r - - : .  i t : .  of A and B will

- -rn i l  f . - i t  iai 1~ attract ive ts  C 1 it -s outside t i

of - s r  r - , F t  - 4 i ris . ” 7)

- otisi der is - T’-(. I ‘riad (4; -1 , , 1) . Then the Caplow ( ow ~~r index ,
A B C

is ;i v - -n  li .
~;

(1 , 0, 0) if 9 a- (A) (B) (C)

(2/3, 1/3 , 0) if p = (AB) (C)

= (2/3, 0, 1/3) if p = (AC) (B)

(1, 0, 0) if P = (A)(RC )

(‘/3 , 1/3, 0) if p = (ABC)

The transition digraph is as in Figure 6.6. )(
0
(K) = {(A) (B)(C), (A) (Bc)}. Caplow

argues:
“ ...A is stronger than B and C combined and has no
motive to form a coalition. As in Type 4 , t r u e  coal i t ion is
impossible. However , while in Type 4 both of the weaker
utembers seek to j o i n  the s t ronger  member,  only  C can improve
his position by finding some extraneous means of inducing A
to join him,” [7)

—14—
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( A )( B ) ( C )

(AB )(C (ABC )

(Ac)(B) (A)(BC)

Figure 6.5 The transition digraph of Type S triad.

( A ) ( B ) ( C )

(AB)(C) (AB C)

• (A ) ( B C )
(AC )(B)

The transition digraph of Type 6 triad .

— 15—
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By claiming that only C can improve his position by joining A , Caplow seems to

imply that B controls C in the c.s. (A)(B)(C). Such an assumption seems un-

reasonable to us and we resolve this small discrepancy by suggesting that Caplow has

erred in making such a claim . Note that a similar discrepancy arises in Caplow ’ s

analysis of the Type 3 triad where he claims that B is superior to A in c s .

(A)(B)(C).

Example 6.7. Consider the Type 7 triad [4; 3 ,2,11. Then the Caplow power index , s ,
A B C

is given by

(0 , 0, 0)  i f  P = (A)(B)(C)

(2/3 , 1/3 , 0) if 9 = (AB) (C)

(2/3, 0, 1/3) if p = (AC)(B)

• 
(0, 0, 0) if p = (A) (BC)

(2/3 , 1/3, 0) if p = (ABC)

The transition digraph is shown in Figure 6.7. Hence, 1(
0
(K) {(AB)(C), (AC) (B),

(AB C ) ) .

Example 6.8. Consider the Type 8 triad [3; 2 , 1,1]. Then the Caplow power index , K

A B C
is given by

(0, 0, 0)  i f  P = (A)(B)(C)

(2/3 , 1/3, 0) if p = (AB) (C)

K (P) = (2/3, 0, 1/3 )  if p = (AC) (B)

(0 , 0, 0) i f  p = (A) (BC)

(1, 0, 0) if p = (ABC)
‘a-

The transitiOn digraph is as in Figure 6.7. Hence , K0
(K) = {(AB) (C) , (AC) (B), (P i B C ) } .

For the Type 7 and 8 triads, Caplow argues:

the combined strength of B and C is exactly equal to
A , so that no effective coalition of B and C is strate-
gically possible. In other words, although a coalition of B
and C can block the dominance of A , it is not sufficient
to control the situation , and , therefore , the probable coali-
tiOns under the standard assumptions are AB or AC. ’ 18)

—16—
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( A ) ( B ) ( C )

(AB )( C )  
. 

‘ (ABC )

(A C ) ( B )  ( A ) ( B C )

Figure 6.7. The transition digraph of Types 7 and 8 triads.

This completes our analysis of the eight different triads. The results are sum-

marized in Table 6.1. A comparison reveals almost total agreement. All the c.s.’s

predicted by Caplow are predicted by our theory. The only disagreements are in Types

4, 6, 7, 8, where our theory predicts more c.s.’s than that predicted by Caplow.

However , this can easily be explained. Caplow implicitly assumes that in every triad ,

bargaining for coalitions start from the c.s. (A)(B)(C) . A quick look at Figures 6.1-

6.7 wi l l  reveal that  wi th  th i s  additional assumption , our theory gives exactly the same

predict ions as Caplow ’s.

Vinacke and Arkoff [311 conducted experiments to test Caplow ’s theory. T-ieir re-

sults, shown in Table 6.2, tend to support Caplow ’s theory in general with a few dis-

agreements especially in the case of Type 3 and Type 5 triads. In the Type 3 triad ,

Caplow predicts coalition structures (AB) (C) and (AC) (B) without any reference to

their relative frequency of occurrence. However Vinacke and Arkoff note that in the

Type 3 t r i a d ,  c.s. (AC)(B) occurs more frequently than c.s. (AB)(C). In the Type S

triad , Caplow predicts coalition structures (AC) (B) and (A) (BC) with the reserva-

tion that

—17—
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.whether the differential strength c f A and B

will make them differentially a t t r a c t i v e  to C l ies
outside the scope of our present assumptions.” [7]

The results of the Vinacke-Arkoff experiments indicate that in the Type S triad , c.s.

(A) (BC) occurs more often than c.s. (AC) (B).

Chertkoff  [10) makes an addi t ional  assumption which leads to the conclusion that in

the Type 5 triad , c.s. (A) (BC ) occurs twice as frequently as (AC) (B) and that c.s.

(AB ) (C) does not occur at all. Also , the same assumption when applied to the case of

Type 3 triad leads to the conclusion that c.s.’s (AB) (C) and (AC) (B) are equally

likely and c.s. (A) (BC) does not occur at all.

Let us assume that all transitions from each coalition 5tructu1~ are equally likely .

Then given an initial probability distribution on the set of all “-alition structures ,

we can compute the probability of formation of each coalition structure in K
1~~~~

. E.g.,

in the Type 5 triad , given that players start (with probability 1 ) f rom c .s. (A)  (B)  (C)

we observe that (Figure 6.8) c.s. (AB) (C) forms with probability 1/3, c-s. (AC) (B)

forms with probability 1/3 and c.s. (A) (BC) forms with probability 1/3. However ,

once c.s. (AB) (C) is formed , cs. (A) (BC) occurs w i t h  p robab i l i t y  1. The net  r e su l t

is that c.s (A) (BC) occurs with probability 2/3 and c.s. (AC)(B) occurs with ;iroba-

bility 1/3, Coalition structure (AS ) (C) also forms with probability 1/3 but only as

an intermediate c.s., i.e., only temporarily.

( A ) ( B ) ( C )

1/3

1/3 1/3

(AB)(C) I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f 

(ABC)

( AC ) ( B )  
( A ) ( BC)

Figure 6.8 The transition digraph of the Type S triad with the probability
of transitions under the assumption of equiprohable transit.icní- .
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A s imilar analysis of the Type 3 t riad (Figure  6 .9)  indicates that , s ta r t ing  from

c.s. (A) (B) (C) (with probability 1), c.s. (P.8) (C) occurs with probability 1/2 and

cs . (AC) (B) occurs with probability 1/2. Coalition structure (A) (BC ) occurs only

as an intermediate coalition structure with probability 1/3, A summary of the predic-

tions of our theories under the assumption of equi-probable transitions is shown in Table

6.3. Note that these predictions agree quite well with the Vinacke—Arkoff experimental

results. -

( A ) ( B ) ( C )
1/3

1/3 1/3

1/2
(A~B) (c) (AB C)

(AC)(B) 1/2 (A) (BC)

Figure 6.9. The transition digraph of the Type 3 triad with the
probabilities of transition under the assumption of
equi-probable transitions.
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7. A Mathematical Analysis of Gramson ’s Theory of Coalition Formation

Following Caplow , Gamson formulated a slightly more general theory of coalition

formation in proper weighted majority games without dictators or veto players. Before

we present Gamson s theory, we need a definition. Let r be a weighted majority game

A cheapest winning coalition is a winning coalition whose total weight is a minimum

among all winning coalitions. Gamson ’s main hypothesis is as follows:

“Any participant will expect others to demand from a coalition
a share of the payoff proportional to the amount of resources
which they contribute to a coalition.” [13]

Here, a participant refers to a player, and his resources refers to his weight in the

weighted majority game. Based on his main hypothesis, Gamson makes the following pre-

dictions about coalition formation.

(i) A player will favor a cheapest winning coalition.

(ii) A coalition of two distinct players U,j} will farm if and only if there

are reciprocal strategy choicer. between the two players. I.e. both player

i and player j  prefer coalition U,j}.

(iii) The process of coalition formation is a step by step process where two players

merge together into a coalition at a time.

(iv) Once a two-person coalition forms, the situation becomes a new one--the two

players in the coalition are replaced by one player whose weight equals the

sum of the weights of the two players in the coalition.

Implicit in Caisson’s main hypothesis is a definition of a power index.

Let r = [q; a1,...,a ]  be a proper weighted majority game without a dictator or veto

players. Then the Gaxnson power index, denoted by y , is given by

a. 
if ~ a. ~‘ 0 and €

a.

(7.1) y(P) (j) = 
iEP~

0 if ~ a = O o r

where 14
k 

£ ~ is such that ~ 
~k

’ for all 0 fl and all i ‘- N. Let

(7.2) g mm ~ a .
B i R

S

and
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(7.3) ri
g 

= {P e 11 : P contains a cheapest winning coalition }

Then Theorem 7.1 tells us what our model predicts.

Theorem 7.1 Let F be a proper weighted majority game . Then K
0

(y )  =

Proof: Let P 1 € 11
g ’ Suppose P2 e I! such that P 2 dom R

( Y )  
~
‘

. 
for some R €

with R € . Then ‘4- ( P 2 ) Ci )  > y(P1) (i) for all i £ B . Let T € P1 such th r  T

• and ~~ a . = g. Since F is proper, R n  T ~1 0 . Let j C R n T .  Then ~- (p1
) ( j )  =

isT
a ./g. Since j  c B , y(P

2
) ( j )  = a./( ~ aj > a./g; i.e., ~ a. <g and a contra-

i€R icR
diction (from the aefinition of g) results. Hence K

0
(y) ~

Let P1 € rT
g 

and P2 € 11 such that 
~ 2 ~ 

rig. Then P1 domT(Y) ~2 
where T C

such that T €2.~ and ~ a. g, because y(~ 1
)(i) = a./g for all i T and

irT 1

< a./g for all i € T. Hence K
0
(y) c 11

g 0

It can be easily shown that Gamson s predictions (i)—(iv) about coalition formation

lead to c.s.’s in fl
g • However Caisson assumes that players begin forming coalitions

starting from one player coalitions. So if we choose only those c.s.’s in 11
g 

that are

accessible from the c.s. consisting of only one player coalitions , our mode l reaches

the same conclusions as Gamson ’s predictions,
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8. Conclusion

Under the same assumptions , our theory of coalition formation sakes th~ ~;ao. j-r -

dictions as Caplow ’s and Gainson ’s theories. This, however , should not b~ m i scc t - r~

as an endorsement of these two theories. Both Caplow ’s and Ganson ’s theories are se-

- I scriptive and depend heavily on their (implicit) definition of a power i t h - x .  Fro m a

norisative point of view these power indices have many shortcomings. Several power in-

dices have been defined for simple games, Two of these , the Shap ley-Shubik 1ndex [25)

and the Banzhaf—Coleman index [2 , 3, 4, 5, 11] have been extensively used and st u - i i ed

Hence it is most appropriate to study the predictions of our model wi th respect tc~ these

power indices. A detailed analysis of the predictions of our theory wi th respect to the

Shapley—Shubik power index is presented in Shenoy [28).
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The proceSs of coalition formation is modeled as an abstract game. Two solu-
tions of abstract games, the core and the dynamic solution, are used as the
predictions of our model. Two classical theories of coalitions in sociology due
to Caplow and Gainson are reformulated in a more general and mathematical setting.
These theories are then analyzed using the techniques of our ~~~~~~~~~~~~
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